
Technologies et procédés de recyclage des granulats recyclés

Technologies de tri avec application aux granulats recyclés

- Introduction
- ▶ Tri par rayons X Application XRF
- ► Tri par infra-rouge Application spectrométrie IR
- ▶ Tri par densité Application Jig à air & Jig à eau
- Conclusion

- ► Maîtrise du tri : besoin de technologies « efficaces »
- ► **Évolution**: Automatisation et diminution des prix des machines
- Aujourd'hui : panel « assez » large de procédés de tri en particulier :
 - Analyse rayons X
 - Spectrométrie infra-rouge
 - Densimétrie

Principe de fonctionnement

Transmission des rayons X / Analyse fluorescence par rayons X Principe de la mesure: analyse chimique :

- à partir de la séparation par densimétrie atomique
- dépendant des rayons X générés par le mouvement des électrons

Avantage

non-destructive pour trier les métaux et les minerais (géologie, exploitation minière et métallurgie)

Contraintes principales

encapsulage pour sécurité et éviter les impuretés

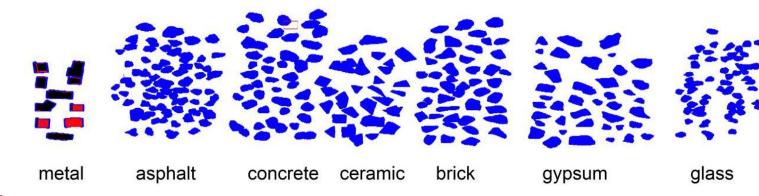
Campagne expérimentale (1)

Mise en place des particules de matériaux traitées

metal

asphalt

concrete ceramic


brick

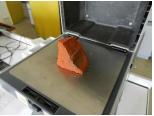
gypsum

glass

► Résultats (1)

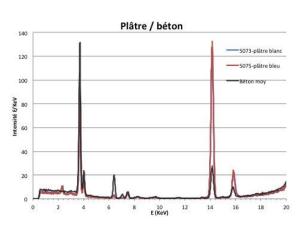
Images résultant du système d'analyse rayons X

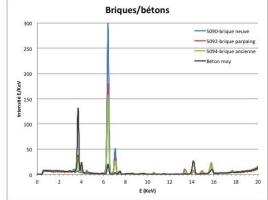
À part les particules de métal que l'on peut distinguer, les types de matériaux ne sont pas remarquables

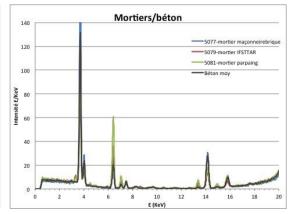


Campagne expérimentale (2)

Comparer les « traces » de chaque type de matériau à partir des mesures issues de l'appareil







RECYBETON

TRI PAR INFRA-ROUGE — APPLICATION SPECTROMÉTRIE IR

Principe de fonctionnement

composition moléculaire de surface ou analyse quantitative des composés de mélange

Principe de la mesure : irradiation du matériau à analyser

Domaine d'utilisation

agroalimentaire, papier, produits pharmaceutiques

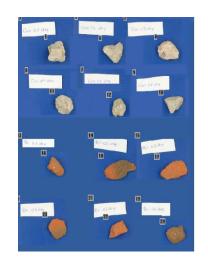
Avantages

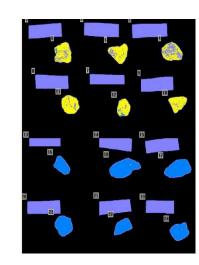

mesure non destructive, facilement implémentable sur une installation, complémentaire à un séparateur à courant de Foucault (ex. : tri des emballages)

TRI PAR INFRA-ROUGE — APPLICATION SPECTROMÉTRIE IR

Campagne expérimentale

Spectromètre FTIR

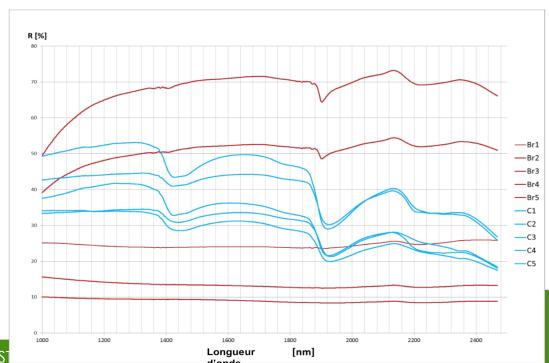

Matériaux


Granulats de béton recyclé, mortier, brique, plâtre, céramique, agrégat d'enrobé bitumineux, verre, métal

TRI PAR INFRA-ROUGE - APPLICATION SPECTROMÉTRIE IR

Résultats d'analyse

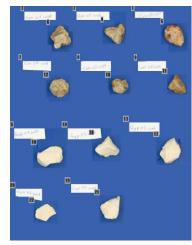
Comparaison GBR et brique : Image réelle (*gauche*) et image résultant du logiciel (droite)

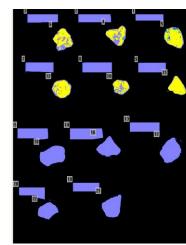


Spectromètre d'analyse :

Rouge: brique

Bleu: GBR

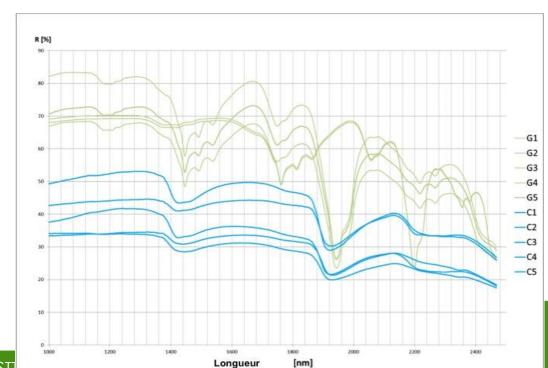




TRI PAR INFRA-ROUGE - APPLICATION SPECTROMÉTRIE IR

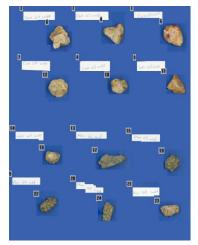
Résultats d'analyse

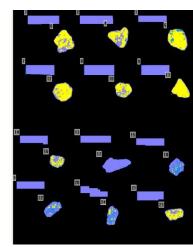
Comparaison GBR et plâtre : Image réelle (*gauche*) et image résultant du logiciel (droite)



Spectromètre d'analyse :

Vert : plâtre

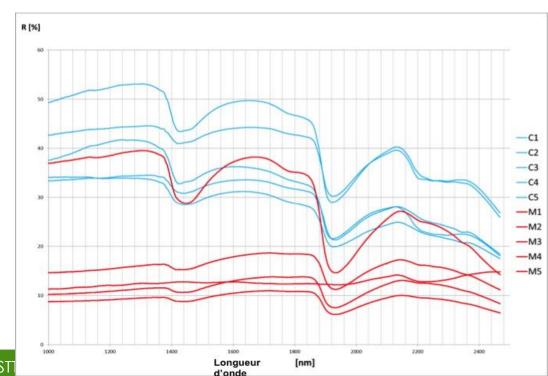

Bleu: GBR



TRI PAR INFRA-ROUGE - APPLICATION SPECTROMÉTRIE IR

Résultats d'analyse

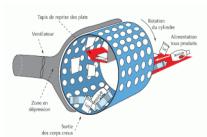
Comparaison GBR et mortier : Image réelle (*gauche*) et image résultant du logiciel (droite)

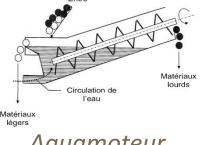


Spectromètre d'analyse :

Rouge: mortier

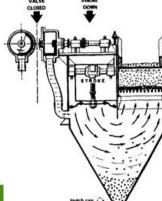
Bleu: GBR




Vibrer un ensemble de particules dans un fluide pour les arranger selon leur masse volumique

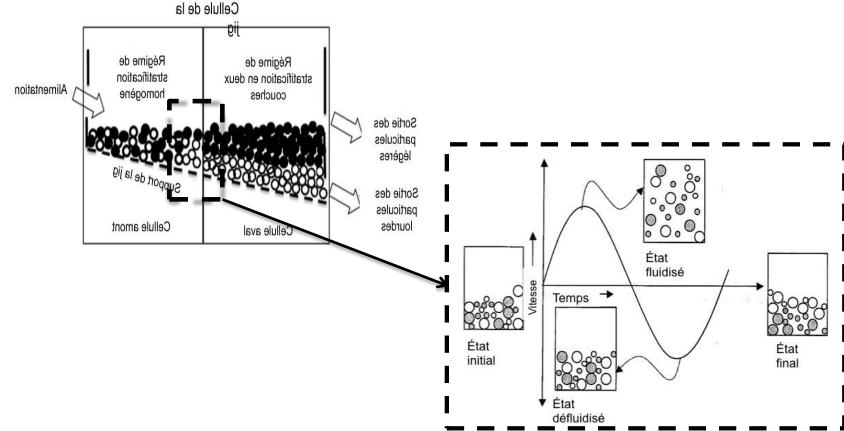
Types de procédés : classés selon le fluide utilisé et « l'écoulement des particules »


Alimentation des particules avec le fluide :



Trommel Aquamoteur Fluidisation des particules par le fluide :

Jig à eau

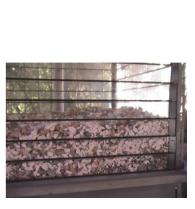

Jig à air

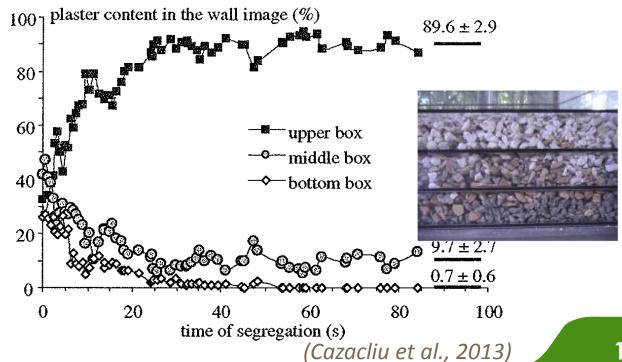
▶ Procédé « Jig »

Procédé de tri basé sur la stratification densimétrique par les mouvements verticaux du fluide immergeant les particules à trier

RECYBETON

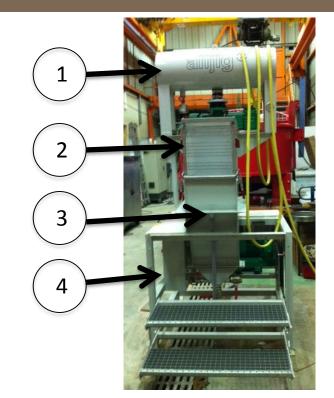
TRI PAR DENSITÉ - APPLICATION JIG À AIR & JIG À EAU




Campagne expérimentale (1)

Application de la jig à air

Résultats (1)



Campagne expérimentale (1)

Jig à eau de laboratoire ou stratificateur

- 1 Réservoir d'air pour le piston
- 2 Bac pour les matériaux
- 3 Réservoir d'eau
- 4 Tableau pour régler les paramètres (amplitude et fréquence du piston)

▶ Matériaux:

Pour 2 granulométries (4/20) et (10/20) :

- 3 mélanges binaires {GBD ; Plâtre} : (60;40) à (90;10) (% vol.)
- 3 mélanges binaires {GBD; Brique}: (60;40) à (90;10)

Et 2 mélanges ternaires (GBD; Plâtre; Brique): (60;20;20) et (80;10;10)

► Exemples d'essais (2) 60 % de GBR et 40 % de brique

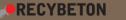
20 minutes de fonctionnement

État final

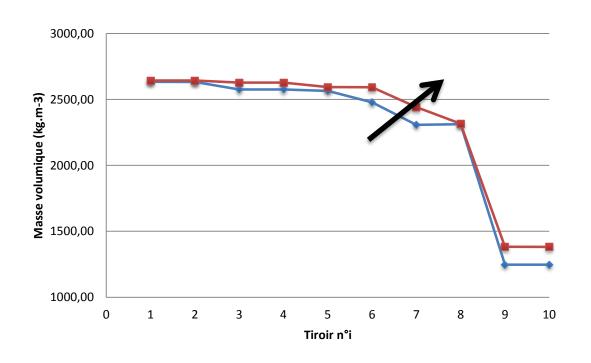
60 % de GBR et 40 % de brique

État initial

20 minutes de fonctionnement


État final

: Augmentation de la part de GBR : 60% ; 80% ; 90%



► Résultats (2) : Profil de masse volumique - mélange ternaire

: Augmentation de GBR : 60% ; 80 % Proportion complémentaire égale pour le plâtre et le brique

Pertinence des technologies présentées

- Tri par rayons X : méthode à approfondir
- Tri par spectrométrie IR: procédé prometteur
- Tri densimétrique très efficace si les matériaux ont des densités différentes

► Perspectives ...

Étude en laboratoire:

Analyse des paramètres (forme, granulométrie, composition des types de matériaux en entrée de procédés, composition (proportion) des « granulats » de déchets, ...)

Campagnes expérimentales pilotes